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ON STATICALLY POSSIBLE FIELDS IN A SIMPLY CONNECTED VOLUME* 

#.A. RVACHEV 

The general continuously differentiable solution of the system of equations 
V.T = OinVCIis, Y.T = 0 On aV W) 

is determined, where Y is the normal to aV (the boundary aV is simply connected). If T 
is a vector, then the solution represents the general form of the velocity field of the flow 
of an incompressible liquid in a closed volume. However, if T is a symmetric tensor of rank 
two, then the solution represents the general form of a statically possible field of StreSSeS 
in a body whose surface is free from any loads (for example, the temperature or residual 
stresses). The solution can also be used to construct admissible variations of the field of 
stresses in order to obtain numerical solutions in terms of stresses of boundary-value problems 
in theory of elasticity. All tensor-vector- and scalar-valued functions considered below are 
assumed to be smooth, i.e., it is assumed that the functions have continuous derivatives of 
any order that will be used. 

1. Let U=U(X) be a field defined on V,xV and let O= O(X) be a function satisfying 
the follow'ing conditions: 

10 (x) > 0, x E int v; 0 (x) = 0, ao/av + 0, s E av; 0 (x)<O, x s V U av (i-i) 

It can be shown that there are functions o that satisfy (1.1) for any domain V with a 
smooth boundary av. However, from the point of view of the constructiveness of the general 
solutions given below, it is important to have formulae for evaluating m. Methods of con- 
structing such formulae for domains of practically any form are discussed in /l/. 

Lemma. Let f=f(x) be a bounded function on V, such that 

VQ=V(. _. .Y(Vj). . .)=O, k=O, I,. . . ,n . 

(where toI =f) 
on+xg, where g 

The proof 
the lemma also 

ktimes 

on the smooth surface aV, and let 0 satisfy conditions (1.1). Then f= 
is also bounded on V,. 

of the lemma follows from the generalized Taylor formula /l/. We remark that 
holds the case where f and g are vector- or tensor-valued functions. 

Theorem 1. Let av be a smooth and simply connected surface and let o satisfy (1.1). 
Then UET is a solution of (0.1) if and only if 

U = v x (mp) (1.2) 

for some vector field p-p(~). 

Proof. If u is defined by (1.2), then (0.1) can be verified by substituting the above 
expression. 

We shall prove the necessity. By virtue of the first equality in (O.l), u can be rep- 
resented in the form u=Vxq for some q-q(x). We find from the second equality in (0.1) 
that v.(V x q)=O on aV. Integrating this equality over a surface SC av and applying 
Stokes's theorem, we get 

O=SS v.uds=SS v.(Vxq)ds=SSds.(Vxq)=$dx.q (1.3) 
s s s L 

where the last integral is taken over the contour L, being the boundary of S. Since av is 
simply connected, it follows that $dx.q=O for any closed contour on av. Thus, the 
integral 

h(M,)= 1 dx.q (1.4) 
MM, 
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over a curve Mnl, on av depends only on the position of the initial and final points M 
and M, of MM,. If M is fixed, (1.4) defines a single-valued function h(M,) on av. 

We extend h(M,) to a function defined on the entire domain VI in such a way that 

ahlav = v.9 on av (1.5) 
and we set r=q-Vh. It follows from (1.4) and (1.5) that Vh=q on av. Thus, r=O on 
av and by the lemma, r- OP. Moreover, VX(oP)=VXrzVX(q-Vh)=VXq=u, as required. 

Formula (1.2) with an arbitrary p gives the general expression for the velocity of the 
flow of an incompessible liquid in a volume V bounded by impermeable walls av under the 
assumption that av is smooth and simply connected. It can be seen from the proof that in 
the case of a multiply connected boundary at’, the velocity fields that can be obtained in 
the form (1.2) are those and only those that satisfy condition (1.3), i.e., such that the 
flux of the liquid through any closed contour on aV is equal to zero. 

Suppose that av is a doubly connected surface, L is a closed curve on aV incontractible 
to a point on av, SC V is a surface spanned by L, and a particular solution u0 of (0.1) 
is known such that 

!Jds.Uo#O. 
In this case the general solution of (0.1) can be obtained in 

the form Cua + U, where C is any constant and u is defined by (1.2). 
For example, the velocity of the flow of an incompressible liquid in a closed torus V- 

lx I 0 6) > 01, where o (x) = 1 - zQ2 - (I/z,~ + z,* - 2)*, can be obtained in the form u=Cu,+ V X(op), 
where u0 =(-za,z,,O), C is an arbitrary constant, and P (x) is an arbitrary vector-valued func- 
tion. 

The formulation and the proof of Theorem 1 remain the same in the case where u and p are 
tensors of rank two. 

2. Let T= T* = T(r) be a symmetric tensor of rank two bounded for XE VI. We shall 
consider the problem of finding the general solution of the system of Eqs.(O.l). 

The symmetric tensor T can be interpreted as the stress tensor in a continuous medium. 
Then the first equation in (0.1) is the differential equation of the state of equilibrium of 
the medium, and the second equation in (0.1) means that there are no surface loads. 

Theorem 2. Let av be a smooth and simply connected surface, and let o satisfy con- 
dition (1.1). Then T is a solution of (0.1) if and only if 

T = Ink(02H)= C x (V x (dR))* (2.1) 

for some symmetric tensor field R. 

Proof. A symmetric tensor field T is a solution of the first equation in (0.1) if and 
only if T=InkQ (2.2) 
for some symmetric tensor Q /2/. Thus, if T is defined by (2.1), then the first equality in 
(0.1) holds. Moreover, evaluating (2.1) with the use of conditions (l.l), we get 

v.T=v.(-2VoX(R*XVo))=O On av 

since VII Vo. 
Therefore, the sufficiency is proved. 
We shall prove the necessity. Let T satisfy equations (0.1) and let the tensor Q in 

(2.2) be defined. Applying Stokes's formula, we find from (2.2) and from the second equation 
in (0.1) that 

$ dx.(V x Q)* = SSds.(V X (V x Q)*)=$~.Y.T = a 

$dx.(Q-(x,- x) x (C x ;))* =SSds.(V x (Q-(x1 -xx) X (V X Q))*) = 
‘I. s 

ss ds.(V x Q* + (V X (V x Q)') x (x1-x)-C x Q)= 
S 

(2.3) 

S\dsv.(T X (x,-x)) = S@(N) X (XI-~) = o 
B S 

where L is a closed contour, being the boundary of a surface SC av,x, is fixed, and x is 
the current point (with respect to which integration is carried out). By virtue of (2.3), 
since av is simply connected, the integrals 

p(x,) m= 5 dx.(V x Q)' (2.4) 

q (x1) == &Ix. (:Mf (x1-x) x (V X Q))* 



145 

over a curve MM, c aV, where M1 = M,(x,) and M is a fixed point, define single-valued vector 
functions p(x,) and 9 (x,) on aV. If p and q were defined by (2.4) everywhere on v,,then 
the derivative of qin anydirection I could be found by evaluating the derivative of the 

second integral in (2.4): 

_.$=,.a*+( 1 ~~.(VxQ)')xl=i.Q+~x~=~)~(Q"~xP) 
MM, 

where Z is the unit tensor, and the equalities 
Vq=Q-Exp, V(Vq)=V(Q-Z XP) 

would hold. 

(2.5) 

But since formulae (2.4) define p and q on av only, equalities (2.5) are, generally 
speaking, not valid for an arbitrary extension of p and q. 

We extend p and q onto V, in such a way that 

ap wiav = Y. to x Q)*. aqt+f/~=~.fQ--- x P) (2.6), 

@%W/@+=** (+ (V {Q--E x P))) 

for x1= av. Since the derivatives of p(x,) and 9i (x1) in directions orthogonal to v are 
completely defined by the integrals in (2.4) for x,~8V and derivatives (2.6) are con- 
sistent with (2.5), it follows that for such an extension the differential formulae (2.5) hold 
on av. 

Now, we consider the symmetric tensor defq =ria(Vq+(Vq)*) and we set N=Q-defq. By 
virtue of (2.5), we have 

N=Q-'/a(Vq+(Vq)*)=Q--'/z(Q-REp+Q*--(fExp)*)=O 
VN=VQ---rl,(V(Q-E xp)+G(Q-E xp)*)=O 

on av. Therefore, the lemma yields N=-_@R. Moreover, 

Ink(o*R)= Ink(Q - defq)= Ink Q = T 

as required. 
With the aid of formula (2.11, one can construct admissible variations of the field of 

stresses in order to solve boundary-value problems in the mechanics of a deformable rigid 
body on the basis of the Castilliagno principle. However, there are difficulties arising in 
the applications of the formula connected with some restrictions on the smoothness and 
connectivity of the boundary W and with the redundancy of representation (2.1): the tensor 
R on the right-hand side of (2.1) contains six arbitrary components, while the six components 
of T are connected by three equations (the first equality in (0.1)). 

In order to solve plane and axially-symmetric problems of the theory of elasticity, a 
package of computer programs using variations of the form (2.1) have been designed. For 
these types of problems, the difficulties have been overcome successfully. Numerical 
experiments that have been carried out indicate that the approximate solutions of the 
problems in terms of stresses obtained on the basis of (2.1) converge faster than the 
solutions of the problems in terms of displacements (which are also based on function (1.1) 
and on the R-functions). 

If Q is regarded as the tensor of small deformations, then the second equation in (0.1) 
and Zq.(2.2) serve as compatibility conditions for deformations on the surface av. In this 
case the vector field q defined by (2.4) and (2.6) is the field of displacements, which is 
connected with the deformations Q on av by the Cauchy equations. 
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